Как убрать пульсации блока питания

Home Радиотехника Способы борьбы с помехами в импульсных блоках питания

Импульсные блоки питания (ИБП), построенные на основе преобразователей постоянного (выпрямленного сетевого) напряжения в переменное, генерируют нежелательные помехи. На коллекторах (стоках) силовых ключей контролеров ИБП присутствует напряжение, близкое по форме к прямоугольному, размахом, достигающим 600. 700В. Кроме того, в ИБП существуют замкнутые цепи, по которым циркулируют импульсные токи с достаточно крутыми фронтами и спадами (0,1. 1 мкс) и амплитудой до 3. 5А и более.

Поэтому ИБП служит источником интенсивных помех, спектр которых простирается от 16. 20 кГц до десятков мегагерц. Эти помехи распространяются в питающую сеть переменного тока и в нагрузку блока питания, создавая интерференционные полосы на экранах телевизоров, мониторов, снижая отношение сигнал-шум в трактах записи-воспроизведения видеозаписывающей аппаратуры и т.д. Величина этих паразитных сигналов зависит от частоты преобразования, качества входных и выходных фильтрующих цепей, а на частотах свыше 1 МГц — от конструкции и монтажной схемы преобразователя.

Вообще говоря, ШИМ-преобразователи, которые работают с постоянной частотой переключений, генерируют помехи в известной полосе частот, что облегчает задачу их подавления и является одной из причин их широкого применения в схемах импульсных БП бытовой техники.

Однако, импульсные блоки питания, независимо от типа применяемого ШИМ-преобразователя, должны быть оснащены схемами подавления двух основных видов помех. Этими помехами являются входная несимметричная (дифференциальная) и входная симметричная (синфазная) помехи.

Механизмы возникновения, распространения и методы борьбы в импульсных блоках питания с данными помехами рассмотрим на примере соответствующих эквивалентных схем преобразователей.

Рис.1 Возникновение несимметричной помехи

Входная несимметричная помеха является шумовым током, протекание которого обусловлено разностью напряжений Vin между двумя входными проводниками (рис. 1). Ключевой транзистор преобразователя представлен на рисунке в виде переключателя Fs, который последовательно включается и выключается с частотой пдэекточения преобразователя. Нагрузка изображена в виде переменного резистора RL, сопротивление которого изменяется в зависимости от тока нагрузки. Пассивные элементы L и С соответствуют входному фильтру, встроенному в преобразователь. Кроме того, практически все преобразователи оснащены входным конденсатором Cь, а некоторые также имеют, по крайней мере, небольшую последовательную индуктивность (дроссель), учитываемую в импедансе источника Zs (в Zs также учтена собственная индуктивность сглаживающего электролитического конденсатора сетевого выпрямителя).

Эффективное подавление несимметричной помехи достигается посредством шунтирующего действия конденсатора Сь, который должен иметь высокое качество и характеризоваться малыми эквивалентными последовательными индуктивностью (ЭПИ) и сопротивлением (ЭПС) в соответствующем диапазоне частот (обычно в области частот переключения и выше). В реальных схемах Сь обычно представляет собой конденсатор постоянной емкости 0,1. 1,0 мкф, шунтирующий электролитический конденсатор сетевого выпрямителя. В выпрямителе одновременно стремятся применять высококачественные, как правило, танталовые, электролитические конденсаторы с малыми ЭПИ и ЭПС.

Рис.2 Возникновение паразитной помехи

Симметричная помеха возникает следующим образом. В преобразователе ключевой транзистор, как правило, устанавливается таким образом, чтобы обеспечивался хороший тепловой контакт между его корпусом и шасси БП (радиатором). С целью обеспечения максимальной теплопередачи толщина электрической изоляции между коллектором или стоком ключевого транзистора и шасси делается как можно меньше. В результате между стоком или коллектором транзистора и шасси образуется паразитная емкость Ср (рис.2). Когда транзисторный ключ замыкается или размыкается, возникает ток помехи, протекающий от переключателя через паразитную емкость Ср, RL и С, а затем через заземление обратно к шасси. Этот ток довольно мал, поскольку паразитная емкость невелика (ее типичное значение меньше 10 пф). В то же время, используемый в преобразователе LC фильтр совершенно неэффективен против этого вида тока помехи, поскольку он протекает не через фильтр, а в обход его.

Симметричная помеха подавляется с помощью симметрирующего трансформатора, который представляет собой катушку индуктивности с двумя обмотками, имеющими одинаковое число витков. Она обладает высоким импедансом для симметричного тока, но практически нулевым для несимметричного.

Несимметричный ток (включающий потребляемый ток) втекает в верхнюю обмотку трансформатора и вытекает из нижней. Поскольку токи через эти обмотки равны по величине и противоположны по направлению, а число витков в обмотках одинаково, результирующий магнитный поток в сердечнике, обусловленный несимметричным током, оказывается равным нулю, хотя величина потребляемого тока может быть очень велика. Благодаря этому в симметрирующем трансформаторе обычно используют сердечник с высокой магнитной проницаемостью без воздушного зазора. Причем он имеет достаточно высокую индуктивность для симметричного тока при использовании обмоток всего в несколько витков. Значительно меньший по величине ток симметричной помехи протекает в основном через нижнюю обмотку, а также и через верхнюю в одном и том же направлении. Следовательно, симметрирующий трансформатор обладает высоким импедансом для токов симметричной помехи.

В качестве дополнительных мер подавления помех в импульсных БП применяются следующие:

уменьшение паразитных емкостных связей между цепями первичного (сетевого) напряжения и вторичными цепями; выбор оптимальных режимов переключения транзисторов и диодов, предотвращающих резкие перепады напряжения; сокращение площади контуров, охватываемых цепями, по которым протекают большие импульсные токи. Важное значение имеет конструкция импульсного трансформатора ИБП. Первичную обмотку, как правило, разбивают на две равные секции, одна из которых наматывается в первых слоях катушки, а другая — в последних. Таким образом, все остальные области располагаются между этими секциями. Кроме того, первичные и вторичные обмотки обычно разделяются внутренним экраном. Достаточно эффективным является применение общего экрана в виде короткозамкнутого витка из медной фольги, охватывающего импульсный трансформатор.

Перечисленных мер, как правило, оказывается достаточно, и поэтому в бытовой аппаратуре импульсные БП обычно применяются без экранирующих кожухов.

Рис.3 Типовая схема сетевого фильтра и выпрямителя

Некоторые из рассмотренных способов борьбы с помехами в ИБП иллюстрируются на примере типовой схемы сетевого выпрямителя (рис. 3), применяемого в конструкциях ВМ и ТВ. Конденсаторы С5. С8, установленные параллельно диодам Д1. Д4 мостового выпрямителя сетевого напряжения служат для подавления несимметричных помех. Эту же роль выполняют конденсаторы С1,2, которые симметрируют потенциалы сетевого провода относительно шасси радиоэлектронной технике.

Home Радиотехника Способы борьбы с помехами в импульсных блоках питания

Импульсные блоки питания (ИБП), построенные на основе преобразователей постоянного (выпрямленного сетевого) напряжения в переменное, генерируют нежелательные помехи. На коллекторах (стоках) силовых ключей контролеров ИБП присутствует напряжение, близкое по форме к прямоугольному, размахом, достигающим 600. 700В. Кроме того, в ИБП существуют замкнутые цепи, по которым циркулируют импульсные токи с достаточно крутыми фронтами и спадами (0,1. 1 мкс) и амплитудой до 3. 5А и более.

Поэтому ИБП служит источником интенсивных помех, спектр которых простирается от 16. 20 кГц до десятков мегагерц. Эти помехи распространяются в питающую сеть переменного тока и в нагрузку блока питания, создавая интерференционные полосы на экранах телевизоров, мониторов, снижая отношение сигнал-шум в трактах записи-воспроизведения видеозаписывающей аппаратуры и т.д. Величина этих паразитных сигналов зависит от частоты преобразования, качества входных и выходных фильтрующих цепей, а на частотах свыше 1 МГц — от конструкции и монтажной схемы преобразователя.

Вообще говоря, ШИМ-преобразователи, которые работают с постоянной частотой переключений, генерируют помехи в известной полосе частот, что облегчает задачу их подавления и является одной из причин их широкого применения в схемах импульсных БП бытовой техники.

Однако, импульсные блоки питания, независимо от типа применяемого ШИМ-преобразователя, должны быть оснащены схемами подавления двух основных видов помех. Этими помехами являются входная несимметричная (дифференциальная) и входная симметричная (синфазная) помехи.

Механизмы возникновения, распространения и методы борьбы в импульсных блоках питания с данными помехами рассмотрим на примере соответствующих эквивалентных схем преобразователей.

Рис.1 Возникновение несимметричной помехи

Входная несимметричная помеха является шумовым током, протекание которого обусловлено разностью напряжений Vin между двумя входными проводниками (рис. 1). Ключевой транзистор преобразователя представлен на рисунке в виде переключателя Fs, который последовательно включается и выключается с частотой пдэекточения преобразователя. Нагрузка изображена в виде переменного резистора RL, сопротивление которого изменяется в зависимости от тока нагрузки. Пассивные элементы L и С соответствуют входному фильтру, встроенному в преобразователь. Кроме того, практически все преобразователи оснащены входным конденсатором Cь, а некоторые также имеют, по крайней мере, небольшую последовательную индуктивность (дроссель), учитываемую в импедансе источника Zs (в Zs также учтена собственная индуктивность сглаживающего электролитического конденсатора сетевого выпрямителя).

Эффективное подавление несимметричной помехи достигается посредством шунтирующего действия конденсатора Сь, который должен иметь высокое качество и характеризоваться малыми эквивалентными последовательными индуктивностью (ЭПИ) и сопротивлением (ЭПС) в соответствующем диапазоне частот (обычно в области частот переключения и выше). В реальных схемах Сь обычно представляет собой конденсатор постоянной емкости 0,1. 1,0 мкф, шунтирующий электролитический конденсатор сетевого выпрямителя. В выпрямителе одновременно стремятся применять высококачественные, как правило, танталовые, электролитические конденсаторы с малыми ЭПИ и ЭПС.

Рис.2 Возникновение паразитной помехи

Симметричная помеха возникает следующим образом. В преобразователе ключевой транзистор, как правило, устанавливается таким образом, чтобы обеспечивался хороший тепловой контакт между его корпусом и шасси БП (радиатором). С целью обеспечения максимальной теплопередачи толщина электрической изоляции между коллектором или стоком ключевого транзистора и шасси делается как можно меньше. В результате между стоком или коллектором транзистора и шасси образуется паразитная емкость Ср (рис.2). Когда транзисторный ключ замыкается или размыкается, возникает ток помехи, протекающий от переключателя через паразитную емкость Ср, RL и С, а затем через заземление обратно к шасси. Этот ток довольно мал, поскольку паразитная емкость невелика (ее типичное значение меньше 10 пф). В то же время, используемый в преобразователе LC фильтр совершенно неэффективен против этого вида тока помехи, поскольку он протекает не через фильтр, а в обход его.

Симметричная помеха подавляется с помощью симметрирующего трансформатора, который представляет собой катушку индуктивности с двумя обмотками, имеющими одинаковое число витков. Она обладает высоким импедансом для симметричного тока, но практически нулевым для несимметричного.

Несимметричный ток (включающий потребляемый ток) втекает в верхнюю обмотку трансформатора и вытекает из нижней. Поскольку токи через эти обмотки равны по величине и противоположны по направлению, а число витков в обмотках одинаково, результирующий магнитный поток в сердечнике, обусловленный несимметричным током, оказывается равным нулю, хотя величина потребляемого тока может быть очень велика. Благодаря этому в симметрирующем трансформаторе обычно используют сердечник с высокой магнитной проницаемостью без воздушного зазора. Причем он имеет достаточно высокую индуктивность для симметричного тока при использовании обмоток всего в несколько витков. Значительно меньший по величине ток симметричной помехи протекает в основном через нижнюю обмотку, а также и через верхнюю в одном и том же направлении. Следовательно, симметрирующий трансформатор обладает высоким импедансом для токов симметричной помехи.

В качестве дополнительных мер подавления помех в импульсных БП применяются следующие:

уменьшение паразитных емкостных связей между цепями первичного (сетевого) напряжения и вторичными цепями; выбор оптимальных режимов переключения транзисторов и диодов, предотвращающих резкие перепады напряжения; сокращение площади контуров, охватываемых цепями, по которым протекают большие импульсные токи. Важное значение имеет конструкция импульсного трансформатора ИБП. Первичную обмотку, как правило, разбивают на две равные секции, одна из которых наматывается в первых слоях катушки, а другая — в последних. Таким образом, все остальные области располагаются между этими секциями. Кроме того, первичные и вторичные обмотки обычно разделяются внутренним экраном. Достаточно эффективным является применение общего экрана в виде короткозамкнутого витка из медной фольги, охватывающего импульсный трансформатор.

Перечисленных мер, как правило, оказывается достаточно, и поэтому в бытовой аппаратуре импульсные БП обычно применяются без экранирующих кожухов.

Рис.3 Типовая схема сетевого фильтра и выпрямителя

Некоторые из рассмотренных способов борьбы с помехами в ИБП иллюстрируются на примере типовой схемы сетевого выпрямителя (рис. 3), применяемого в конструкциях ВМ и ТВ. Конденсаторы С5. С8, установленные параллельно диодам Д1. Д4 мостового выпрямителя сетевого напряжения служат для подавления несимметричных помех. Эту же роль выполняют конденсаторы С1,2, которые симметрируют потенциалы сетевого провода относительно шасси радиоэлектронной технике.

Причина отказа блока питания, или почему техника перестает работать. С недавних пор, стал все чаще замечать, что люди стали обращаться, да и сам попадаю, на странный и однообразный ремонт техники. Все начинается примерно по одному сценарию – работал себе аппарат год или два и тут вдруг начал включаться медленно, или вообще не запускаться, или же при включение выключается резко, или же пытается включиться но не включается! В общем берем тестер и проверяем блок питания измерением напряжения на нем, точнее на выходных клеммах, оно как правило находится в допустимых рамках, или как вариант отличается на 0.3-0.4 вольт в меньшую сторону, например у 12 вольтовых блоках питания оно как правило 11.4 вольта.

А вот если проверить осциллографом, или простым тестером из динамика, то слышны высокочастотные пульсации, поэтому без сглаживания эта аппаратура с таким питанием не может работать!

Такие конденсаторы, как правило, внешне заметно на крышке вздуваются или взрываются вообще, при проверки могут показать заметное уменьшение ёмкости – вместо 1000 мкф будет 120-150 мкф, или того меньше, или же в тестере конденсатор может определиться вообще как другой элемент.

При таком чуде, когда конденсатор вдруг стал резистором либо диодом, блок питания пытается включиться, но токи становятся высокими и в крупных фирменных телевизорах такие блоки уходят в защиту. При новой попытки включить все повторяется по кругу.

Часто замену фильтрующего конденсатора можно выполнить увеличенной емкостью, например вместо батареи из трех конденсаторов редкой емкости в 1500 мкф, можно поставить в 4000 мкф. Главное проверить потом стабильность работы прибора и уровень пульсаций, чтобы все было в норме, ну и чтоб конденсатор был на нужное напряжение, или лучше с запасом по напряжению, тогда он будет дополнительно защищен от перепадов.

Оцените статью
Добавить комментарий