Во время работы электродвигателей происходит их нагрев. Температура нагрева может быть разной, т.е. одни двигатели нагреваются меньше, другие — больше. Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток.
Схема электродвигателя в разрезе.
На табличке электродвигателя со всеми данными указан и параметр, называемый класс изоляции.
Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции.
Температурой окружающего воздуха, при которой электродвигатель может работать с номинальной мощностью, считается 40ºС. При повышении температуры окружающего воздуха более 40ºС, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений.
Предельные допустимые превышения температуры активных частей электродвигателей (при температуре окружающей среды 40ºС):
- Класс Y: допустимая температура нагрева до 90°C.
- Класс A: допустимая температура нагрева до 105°C.
- Класс E: допустимая температура нагрева до 120°C.
- Класс B: допустимая температура нагрева до 130°C.
- Класс F: допустимая температура нагрева до 155°C.
- Класс H: допустимая температура нагрева до 180°C.
- Класс C: допустимая температура нагрева свыше 180°C
У асинхронных двигателей, вместе с уменьшением напряжения питающей сети, в
квадрате уменьшается мощность на валу двигателя. Кроме того, уменьшение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток. Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя, увеличивается нагрев статора за счет вихревых токов.
Независимо от снижения температуры окружающего воздуха,увеличивать токовые нагрузки более чем на 10% номинального не допускается.
Ни для кого ни секрет, что в зависимости от области в которой применяется асинхронный двигатель меняется и его режим работы, а для работы в том или ином режиме нужен определенный класс изоляции обмоток этой машины. И конечно же мы знаем какие режимы являются нежелательными для асинхронных двигателей, и какие последствия могут вызвать эти режимы.
В данной статье я не рассматриваю номинальный режим и режим короткого замыкания, и тем более режимы генератора, электродвигателя и так далее.
Например, возьмем режим длительного включения, этот режим считается лучшим и благоприятнее для асинхронного двигателя.
Так как двигатель сам себя охлаждает, работая в установившемся режиме, без всяких скачков нагрузки. Такой режим встречается в ленточных конвейерах, эскалаторах, вентиляторах и так далее.
Другое дело в дрели или двигателе управляющем какой-нибудь задвижкой. Они постоянно включаются и отключаются, а как мы знаем в момент пуска возникают пусковые токи, которые превышают номинальные в семь-восемь раз, это вызывает нагрев. А так как после короткого пуска двигатель останавливается, он не способен вентилировать и охлаждать обмотки тем самых температура только возрастает.
Исходя из этого, были предусмотрены различные способы увеличения рабочей температуры обмоток двигателя. Для этих целей инженеры усилили изоляцию, а её разновидности назвали — классом изоляции. Каждый класс изоляции соответствует определенном режиму работы, на который она рассчитана. Другими словами, каждый класс изоляции рассчитан на определенную температуру, которая является рабочей, и нормально переносится.
Каждый материал, который применяется в качестве изоляционного в обмотках различных электрических машин должен обладать одним важным качеством, который называется – нагревостойкостью.
Нагревостойкость – это
показатель, указывающий на способность того или иного материала сохранять свои свойства при повышении их температуры. А мы знаем, что при интенсивном нагреве, большинство материалов теряют свои свойства, разрушаются и обугливаются, это так же касается и изоляционных материалов.
Так как работа электрических машин сопровождается выделением значительного количества тепла, то материалы, применяемые в качестве изоляторов обязаны выдерживать эти температуры, а также, то не мало важно сохранять свои изолирующие свойства.
Все изоляционные материалы, применяемые в электроэнергетике, разделяют на семь групп, в зависимости от их нагревостойкости:
Классы изоляции
Класс Y — волокнистые материалы из целлюлозы, хлопка, натурального шёлка. В основном это – различные ткани (хлопковые, шелковые, хлопчатобумажные), бумажные (картон, бумага), пластмассы и древесина.
Класс A – как правило к такому классу относят материалы класса Y только пропитанные или погруженные в специальный жидкий диэлектрик, который усиливает диэлектрическую прочность, а еще повышает нагревостойкость. К этим жидким диэлектрикам относятся – трансформаторное масло, органические или натуральные смола, различные типы лаков и так далее.
При совмещении двух видов диэлектриков, мы получаем: лакобумаги, лакоткани, текстолит, гетинакс.
Класс E — синтетические органические материалы или простые сочетания этих материалов, при испытаниях которых было установлено, что они способны работать да уровня температуры соответствующей этому классу, то есть 120 градусов Цельсия. В основном это синтетические материалы, а также их сочетания.
Класс B — материалы на основе асбеста, слюды и стекловолокна, которые применяются в сочетании с различными органическими пропитывающими и связующими диэлектрическими составами.
К ним относят: миканиты, слюдиниты, стеклоткани, асбестовые пряжи и ткани.
Класс F – те же материалы, что и в классе B, но уже в сочетании с неорганическими пропитывающими и связующими в роли которых выступают термостойкие смолы и лаки.
Класс H – так же материалы класса B в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические лаки, смолы и эластомеры.
Класс C – материалы с рабочей температурой свыше 180 градусов по Цельсию и к ним относятся: стекловолокнистые материалы, стекло, шифер, керамика, слюда, материалы из слюды, асбестоцемент, а также эти же материалы в сочетании с различными кремнийорганическими смолами и лаками.
Самыми распространенными классами изоляции стали: класс изоляции E, который применяется в электрических машинах малой мощности; классы изоляции F и B применяются в большинстве электрических машин; для изготовления ответственных электрических машин, работающих в тяжелых и сверхтяжелых условиях, применяется класс изоляции H.
Класс изоляции электродвигателя определяет максимальную температуру обмоток электродвигателя, при которой можно эксплуатировать электродвигатель. Класс изоляции обмоток электродвигателя указан на его бирке (смотри фото).
Классы изоляции определяются по стандартам, установленным Национальной Ассоциацией Производителей Электрооборудования (NEMA) для соответствия температуры двигателя требованиям, имеющим место в различных условиях окружающей среды. Сумма окружающей температуры 40°С и допустимой температуры нагрева дает максимальную температуру обмотки двигателя. Также допускается запас от 5°С до 15°С для точки в центре обмотки, где температура выше.