Классы точности и их применение

В зависимости от величины допусков отверстий и валов ряды допусков и посадок группируются по классам точности. По стандартам посадки установлены в следующих классах точности (в порядке убывания точности): для размеров от 0,1 до 1 и от 1 до 500 мм: 1; 2; 2а; 3; 3а; 4; 5; для размеров более 500 и до 10 000 мм. 2; 2а; 3; 3а; 4; 5; для размеров менее 0,1 мм (по ГОСТ 8809-58) установлены лишь ряды допусков в классах точности 0,1; 0; 1; 2; 2а; 3; 3а; 4 и 5.

Когда нет необходимости в допусках, предусмотренных для валов и отверстий стандартных посадок, установлены «большие допуски»:

для размеров от 0,1 до 1 мм — классы 6 и 7 по ГОСТу 3047-66;

для размеров от 1 до 500 мм — классы 7, 8 и 9 по ОСТ 1010;

для размеров более 500 и до 10 000 мм — классы 7; 8; 9; 10 и 11 по ГОСТ 2689-54.

В зависимости от назначения детали изготовляют по определенному классу точности.

По ОСТ 1010 1-й класс точности является высшим.

Наиболее распространены 2, 3 и 4-й классы. Правильно выбранным классом точности следует считать наиболее грубый класс, обеспечивающий надежную работу соединения.

предназначен для особенно точных однородных посадок. Основной метод окончательной обработки деталей — очень точное тонкое шлифование для валов, многократное развертывание для отверстий и другие доводочные операции.

В машиностроении 1-й класс применяют при изготовлении шарикоподшипников, в некоторых специальных деталях пневматических машин, в соединениях точных измерительных и оптических приборов, а также в прецизионном станкостроении.

используют для изготовления ответственных сопряжений. Основной метод изготовления деталей для валов — шлифование или тщательное обтачивание, для отверстий- шлифование или тщательное растачивание, чистовое развертывание. 2-й класс используется в станкостроении, авто- и авиастроении, точном машиностроении; в радио- и приборостроении и т. д.

широко применяют в тяжелом машиностроении при изготовлении дизелей, в текстильном и сельскохозяйственном машиностроении. Основной метод изготовления деталей: растачивание, обтачивание и развертывание.

Класс точности 2а является промежуточным между 2 и 3-м классами, а класс точности 3а- промежуточным между 3 и 4-м классами. Промежуточные классы точности находят применение в некоторых отраслях промышленности, где не требуется высокая точность.

применяют в сельскохозяйственном машиностроении и вагоностроении. Основной метод изготовления деталей: механическое обтачивание резцом.

применяют для неответственных несопрягаемых поверхностей. В этих классах допускается симметричное расположение полей допусков по отношению к номинальному размеру.

6-й класс точности установлен для неответственных несопрягаемых поверхностей (менее 1 мм) и применяется редко.

Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.

Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.

Класс точности измерительного прибора

Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.

Читайте также:  Как сделать маску летучей мыши своими руками

Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:

  • приборы;
  • преобразователи;
  • установки;
  • системы;
  • принадлежности;
  • меры.

На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:

  • делители напряжения;
  • трансформаторы тока и напряжения;
  • шунты.

Обозначение класса точности

Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.

Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.

Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.

Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.

Грузопоршневой манометр, класс точности 0,05

Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.

Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.

Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Читайте также:  Как стелить линолеум в коридоре

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

В зависимости от требований, предъявляемых к тому или другому механизму, узлу, машине, их детали могут быть выполнены с различной степенью точности. Так, например, детали сельскохозяйственных машин можно изготовлять менее точно, чем детали токарных станков, которые изготовляются в свою очередь с меньшей

Читайте также:  Какую пользу приносит воробей

точностью, чем детали измерительных приборов. Иначе говоря, одна и та же посадка может быть выполнена с различной точностью.

Государственным стандартом в системе допусков для машиностроения предусмотрено 10 классов точности (для размеров от 1 до 500 мм).

Пять из них 1,2,2а, 3, За — более точные, имеющие наименьшие допуски; два класса — 4 и 5 — менее точные;

остальные три — 7, 8 и 9 (6-й класс в системе отсутствует) — имеют наибольшие допуски и предназначаются для несопрягаемых размеров.

Способы обработки деталей в зависимости от классов точности

В машинах и механизмах, работающих на больших скоростях (детали станков, тракторных, автомобильных и авиационных двигателей, электромашин и т. д.)

То же для малоответственных деталей автомобилей, тракторов, сельско-

Калибровка и доводка малых отверстии, хонингование, тонкая расточка, притирка и доводка больших отверстий

Чистовое развертывание, точное чистовое шлифование, протягивание, прошивание и хонннгование

Развертывание, протягивание, шлифование

Расточка чистовым резцом, развертывание, шлифование —

Тонкое шлифование, притирка, доводка, полирование

Точное чистовое шлифование, чистовая обточка

Чистовое шлифование и обтачка

Прессовая 1 -я, 2-я, глухая, тугая, плотная, напряженная, скользящая и движения

Все посадки, кроме прессовок

1- й и прессовой

Глухая, тугая, напряжения, плотная и скользящая Прессовая 1-я,

2- я, 3-я, скользящая, ходовая

Высший из классов, применяемых в машиностроении

Наиболее распространенный в машиностроении класс точности 2

Продолжение табл. 3

Применение хозяйственных, текстильных машин и т. п

Для малоответственных деталей автомобилей, тракторов, сельскохозяйственных, текстильных машин и т. п.

Расточка резцом, черновое развертывание, шлифование

Чистовая обточка валов больших диаметров и шлифование малых диаметров

В сельскохозяйственном машиностроении, паровозо — и вагоностроении, в сопряжениях штампованных деталей и т. д.

Точное сверление одним сверлом по кондуктору, двумя сверлами, зенкерование

Прессовая скользящая, ходовая, широкоходовая, легкоходовая

Скользящая и ходовая

Для сопрягаемых де-

По этим классам

талей не применяют

отливка в землю

Применяют только при изготовлении дета-

обдирка, отливка, отрезка

пуски на свободные (несопрягае-

лей с допускаемыми грубыми отклонениями от номинальных размеров

Для определения, к какому классу точности относится та или иная посадка, у ее условного обозначения проставляется в виде индекса соответствующая цифра. Например, глухая посадка первого класса точности обозначается Г1; ходовая четвертого класса точности — Х4; прессовая 2-я третьего класса — Пр2з и т. д.

Только посадки второго класса точности не имеют цифрового обозначения; например обозначение Пр указывает на прессовую посадку второго класса точности;

обозначение Т — на тугую и т. д. Но посадки класса точности 2а, как и других классов, имеют условное обозначение и цифру; например тугая посадка класса точности 2а обозначается Т2а

Виды погрешности обработки. Понятие о случайных и систематических погрешностях.

Для правильного функционирования изделий необходимо чтобы назначались отклонения не только на размеры, но и на форму и расположение поверхностей.

Под отклонением от правильной геометрической формы или расположения поверхности понимают отклонение реальной детали от номинальной, т.е. заданной чертежом: ∆=Аизмтреб.

В основу нормирования положен принцип прилегающих прямых, окружностей, плоскостей, поверхностей и т.д.

Само отклонение оценивается наибольшим расстоянием от прилегающей поверхности до реальной по перпендикуляру.

Причины возникновения отклонений формы:

Овальность – износ посадочных поверхностей подшипников.

Огранка – бесцентровое шлифование.

Конусность – износ инструмента.

Бочкообразность – при обработке длинных тонких валов.

Седлообразность – при обработке коротких толстых валов.

Обозначение отклонений формы и расположения поверхности.

А – нормальная точность — 60%Т

В – средняя точность – 40%Т

С – высокая точность – 25%Т

Отклонения формы цилиндрических поверхностей, их нормирование и примеры обозначения на чертежах допусков формы цилиндрических поверхностей.

Овальность Огранка Некруглость

Конусообразность Бочкообразность Седлообразность

Оцените статью
Добавить комментарий

Adblock
detector