Ключи на моп транзисторах

    Из-за того, что в открытом состоянии транзистор имеет очень малое сопротивление сток-исток, падение напряжения на нём мало. Именно поэтому имеет значение в какое "плечо" включать нагрузку. Например, для открытия полевого транзистора N-типа на затвор нужно подать положительное напряжение относительно истока — если при этом включить нагрузку в цепь истока, то напряжение на истоке будет равно:

Здесь Rотк. это сопротивление открытого транзистора. Так как данное сопротивление мало (десятки-сотни миллиом), если притянуть затвор к питанию, разница напряжений между затвором и истоком будет недостаточна для полного открытия транзистора даже при большом токе. Данное ограничение можно обойти используя разные источники для питания нагрузки и для управления затвором, но нужно чётко понимать как это работает.

  • Одна из особенностей подключения MOSFET транзистора к цифровым схемам — это необходимость подачи достаточного напряжения затвор-исток. В даташитах на транзистор пороговое напряжение затвор-исток (gate-source), при котором он начинает открываться называется gate threshold voltage (VGS). для полного открытия таким транзисторам надо подать на затвор довольно большое напряжение. Обычно это около 10 вольт, а микроконтроллер чаще всего может выдать максимум 5В. Есть несколько вариантов решения данной проблемы:
    • На биполярных транзисторах соорудить цепочку, подающую питание с высоковольтной цепи на затвор.
    • Применить специальную микросхему-драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117. Надо только не забывать, что есть драйверы как верхнего так и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и коммутирующего транзистора. Для того, чтобы открыть N-канальный транзистор в верхнем плече, ему на затвор нужно подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Этим и отличается драйвер нижнего плеча от драйвера верхнего плеча.
    • Также возможно просто использовать транзистор с малым отпирающим напряжением (т.н. logic level транзисторы). Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
    • Никогда не оставляйте затвор "болтаться" в воздухе — так как транзистор управляется "полем", на затворе могут наводиться помехи от окружающих электро-магнитных полей, поэтому желательно всегда притягивать его через большое сопротивление либо к питанию, либо к земле, в зависимости от схемы. Сказанное верно, даже если вы используете микроконтроллер для управления транзистором — это поможет избежать неопределённых состояний, когда управляющее устройство, например, перезагружается.

      Наличие емкости на затворе создаёт бросок "зарядного" тока при открытии, поэтому для его ограничения рекомендуется ставить небольшой резистор в цепь затвора. Ограничив ток резистором вы также увеличите время открытия транзистора.

      Читайте также:  Коды ошибок духового шкафа аристон

      Для шунтирования импульса тока, образующегося при отключении индуктивной нагрузки, добавляют быстрый защитный диод (TVS-диод), включённый параллельно истоку-стоку. Если имеется однонаправленный супрессор используется обратное включение, хотя допустимо также использовать двунаправленные TVS-диоды. Также, если транзисторы работают в мостовой или полумостовой схеме на высокой частоте (индукционные нагреватели, импульсные источники питания и т.п.), то в цепь стока встречно включается диод Шоттки для блокирования паразитного диода. Паразитный диод имеет большое время запирания, что может привести к сквозным токам и выходу транзисторов из строя.

      Если вы планируете использовать полевой транзистор в качестве быстрого высокочастотного ключа иили для коммутации мощной или индуктивной нагрузки, необходимо использовать т.н. снабберные цепи — часть схемы, замыкающая токи переходных процессов на себя, уменьшая паразитный нагрев транзистора. Снаббер также защищает от самооткрывания транзистора при превышении скорости нарастания напряжения на выводах сток-исток.

      Создание цифровых ИС с повышенной степенью интеграции обусловило особый интерес к базовым логическим элементам с очень малыми потребляемой мощностью и занимаемой на кристалле площадью. Традиционный способ повышения экономичности за счет увеличения сопротивления резисторов неизбежно приводит к увеличению их геометрических размеров и паразитной емкости на подложку. Кардинальным способом решения проблемы явилось использование в ключевых схемах вместо резисторов динамической нагрузки — МОП- транзисторов. Они способны хорошо работать в режиме микротоков и имеют малые габариты.

      Получили распространение две схемы ключевых элементов: на транзисторах с каналами одного типа проводимости и на комплементарных транзисторах — на парах транзисторов с каналами разного типа проводимости

      Ключ, на однотипных МОП- транзисторах. Широкое применение находят n — канальные транзисторы, поскольку они обеспечивают более высокое быстродействие, чем р — канальные, а логические элементы на их основе легко согласуются с логическими элементами на биполярных транзисторах. Принципиальная схема ключа на n-канальных транзисторах и поясняющие его работу временные диаграммы приведены на рис. 4.4.1. Роль динамической нагрузки выполняет транзистор Т2, у которого затвор соединен со стоком, образуя двухполюсник.

      В запертом состоянии Т1, когда на его затвор подано напряжение UВХ, не превышающее порога отпирания UЗИ.ПОР1 (рисунок 4.4.2-а), ток через Т2 практически не протекает, поэтому падение напряжения UСИ.2 ≈ 0 и UВЫХ = ЕП. Отсюда следует, что UЗИ.2 ≈ 0 и Т2 тоже закрыт. Точное значение U 1 ВЫХ определяется точкой пересечения выходной характеристики транзистора Т1 при UЗИ.1 ≈ 0 и линии нагрузки, представляющей собой динамическую характеристику IС2 = f(UЗИ.2 ) транзистора Т2 (точка А на рис. 4.4.2-б).

      Эта точка находится в интервалеEП. ( EПUЗИ.ПОР2), смещаясь к одной или другой границе интервала в зависимости от соотношения токов утечки транзисторов. С учетом этого из рисунка. 4.4.1-б видно, что последующий ключ будет надежно открыт, если минимально возможное выходное напряжение данного ключа EПUЗИ.ПОР2,> UЗИ.ПОР1. Отсюда следует требование к напряжению источника питания: EП > UЗИ.ПОР1 + UЗИ.ПОР2.

      Читайте также:  Как узнать из чего сделан дом

      Итак, ввиду весьма малых остаточных напряжений на открытых транзисторах перепад выходных уровней ключа приближается к напряжению источника питания ЕП.

      Выходное сопротивление ключа определяется сопротивлением открытого транзистора. В интересах повышения быстродействия оно делается по возможности малым. Благодаря этому быстродействие ключей на комплементарных МОП- транзисторах не уступает быстродействию ключей на биполярных транзисторах.

      В обоих статических состояниях мощности от источника питания ключ почти не потребляет, так как один из транзисторов закрыт. Для избежания одновременного отпирания обоих транзисторов при переключениях, когда UBX меняется в пределах 0. ЕП, необходимо обеспечить условие

      С увеличением частоты переключений растет средний ток перезаряда емкости нагрузки, обусловливая рост динамической потребляемой мощности. Она может стать ограничивающим фактором на допустимую частоту переключений и емкость нагрузки.

      Сегодня для закрепления материала про полевики рассмотрим схемы на полевых транзисторах и обсудим принцип их работы. Предыдущие статьи про ПТ вот тут – раз и два.

      Схема истокового повторителя.

      Биполярным аналогом этого устройства является эмиттерный повторитель (о нем шла речь тут). Вот как выглядит простейший повторитель на ПТ:

      Ну давайте разбираться что же и как этот повторитель повторяет 😉 Напряжение на выходе:

      Ток стока мы можем определить через напряжение затвор-исток следующим образом:

      Подставляем в формулу для и получаем вот что:

      И если сопротивление нагрузки намного превышает величину , то мы получаем довольно-таки хороший повторитель ().

      Но у этой схемы есть парочка существенных недостатков. Во-первых, характеристики ПТ трудно поддаются контролю при изготовлении, поэтому такой истоковый повторитель может иметь непредсказуемое смещение по постоянному току. А во-вторых, такой повторитель имеет довольно-таки большое выходное сопротивление, соответственно, амплитуда выходного сигнала все-таки будет меньше, чем амплитуда сигнала на входе.

      Более качественный повторитель получается при использовании согласованных пар ПТ. Такая схема выглядит следующим образом:

      Рассмотрим работу данной схемы. Полевик Q2 задает определенный ток. Этот ток соответствует напряжению затвор-исток, равному нулю. Транзисторы включены последовательно, значит через Q1 течет такой же ток, а так как полевики абсолютно одинаковые, то и для Q1 напряжение затвор-исток равно нулю. В то же время:

      Вот и получаем, что , то есть напряжение на выходе повторяет сигнал на входе.

      Эту схему истокового повторителя можно еще модернизировать, добавив резисторы в цепь истока. С помощью подбора их значений можно установить разные значения тока стока:

      На этом заканчиваем с истоковыми повторителями и переходим к некоторым другим схемам на полевых транзисторах )

      Схема ключа на полевом транзисторе.

      Здесь мы видим n-канальный МОП-транзистор. При заземленном затворе полевик находится в закрытом состоянии и, соответственно, входной сигнал не проходит на выход. Если подать на затвор напряжение, например, +10 В, то ПТ перейдет в открытое состояние и сигнал практически беспрепятственно пройдет на выход.

      Читайте также:  Клубника гребешки описание сорта фото отзывы

      Тут особо и объяснять нечего )

      Теперь перейдем к логическим элементам (вентилям) на МОП-транзисторах. И начнем с вариантов исполнения логического инвертора. Посмотрите на схемку:

      Что вообще должен делать инвертор? Очевидно, что инвертировать сигнал ) То есть подаем на вход сигнал низкого уровня, на выходе получаем высокий уровень и наоборот. Давайте смотреть как это все работает. Если на входе низкий уровень сигнала, то n-канальный МОП-транзистор закрыт, ток через резистор нагрузки не течет, соответственно, все напряжение Vcc оказывается на выходе. А если на входе высокий уровень, то ПТ во включенном состоянии проводит ток, при этом на нагрузке появляется напряжение, а потенциал стока (выходной сигнал) практически равен нулю (низкий уровень). Вот так вот это схема и работает )

      Рассмотрим еще один вариант инвертора, но уже с использованием p-канального ПТ:

      Работает эта схема аналогично схеме инвертора на n-канальном транзисторе, поэтому останавливаться на этом не будем.

      Есть один большой минус у обеих этих схем – это высокое выходное сопротивление. Можно, конечно, уменьшать , но при это рассеиваемая мощность будет увеличиваться (она обратно пропорциональна квадрату сопротивления). Как вы понимаете, в этом нет ничего хорошего. Отличной альтернативой этим схемам инверторов является схема на комплементарных МОП-транзисторах (КМОП). Она имеет следующий вид:

      Итак, пусть у нас на входе сигнал высокого уровня. Тогда p-канальный МОП-транзистор Q2 будет выключен, а Q1, напротив, будет во включенном состоянии. При этом на выходе будет сигнал низкого уровня. А что если на входе низкий уровень? А тогда наоборот Q1 будет выключен, а Q2 включен, и на выходе окажется сигнал высокого уровня. Вот и все )

      Пожалуй, рассмотрим теперь еще одну схемку на полевиках – схему логического вентиля И-НЕ. Этот вентиль имеет два входа и один выход, и и низкий уровень должен быть на выходе только в том случае, когда на оба входа подан сигнал высокого уровня. Во всех остальных случаях на выходе сигнал высокого уровня.

      Смотрите, как это работает. Если на Входе 1 и Входе 2 высокий уровень, то оба n-канальных транзистора Q1 и Q2 проводят ток, а p-канальные Q3 и Q4 закрыты, и на выходе окажется сигнал низкого уровня. Если на одном из входов сигнал низкого уровня, то один из транзисторов Q3, Q4 открыт, а, соответственно, один из транзисторов Q2, Q1 закрыт. Тогда цепь Q1-Q2-земля разомкнута, а на выход через открытый транзистор Q3 или Q4 попадает напряжение высокого уровня. Вот и получается, что низкий уровень на выходе возможен только если на обоих входах сигнал высокого уровня.

      Заканчиваем на этом разговор о полевых транзисторах, мы сегодня рассмотрели схемы на полевых транзисторах и кроме того разобрались как они работают ) Так что до скорых встреч на нашем сайте!

      Оцените статью
      Добавить комментарий

      Adblock detector