Колебания напряжения на конденсаторе в цепи переменного

07.06.2019

5 июня Что порешать по физике

30 мая Решения вчерашних ЕГЭ по математике

Колебания напряжения на конденсаторе в цепи переменного тока описываются уравнением где все величины выражены в СИ. Емкость конденсатора равна Найдите амплитуду силы тока. (Ответ дать в амперах.)

Общий вид зависимости напряжения на конденсаторе в колебательном контуре: где — амплитудное значение напряжения. Сравнивая с находим, что Значение максимального заряда на обкладках конденсатора равно Амплитуда колебаний силы тока связана с частотой колебаний и максимальным значением заряда конденсатора соотношением Отсюда находим

Позвольте предложить, на мой взгляд, более простой способ решения. Известно, что в цепи переменного тока, в которой есть конденсатор, выполняется зависимость Im=Um/Xc, где под током и напряжением имеются ввиду их амплитудные значения, а Хс — емкостное сопротивление конденсатора, равное Хс=1/w*C. Подставляя 2-ую формулу в первую, окончательно имеем: Im=Um*w*C. Подставляя значения величин из условия, получаем значение амплитуды силы тока, которое совпадает с вашим.

P. S. Мой способ решения кажется мне более разумным по той причине, что обе формулы даны в учебнике по физике, в отличие от последней формулы в предложенном вами способе решения.

Спасибо. Хороший вариант.

Но использованная в конце формула, конечно же, дается в школьном курсе. Ведь насколько я знаю, в этот момент в школьной физике уже начинают использовать производные. Формула следует из закона изменения заряда со временем при гармонических колебаниях и из того, что ток — это производная от заряда

«Физика — 11 класс»

Постоянный ток не может идти по цепи, содержащей конденсатор, так как обкладки конденсатора разделены диэлектриком.
Переменный же ток может идти по цепи, содержащей конденсатор.

Есть источники постоянного и переменного напряжений, в которых постоянное напряжение на зажимах источника равно действующему значению переменного напряжения.
Цепь состоит из конденсатора и лампы накаливания, соединенных последовательно.
При включении постоянного напряжения (переключатель влево) лампа не светится.
При включении переменного напряжения (переключатель вправо) лампа загорается, если емкость конденсатора достаточно велика.

Под действием переменного напряжения происходит периодическая зарядка и разрядка конденсатора.
Ток, идущий в цепи при перезарядке конденсатора, нагревает нить лампы.

Если сопротивлением проводов и обкладок конденсатора можно пренебречь,

то напряжение на конденсаторе равно напряжению на концах цепи.

Заряд конденсатора меняется по гармоническому закону:

q = CUm cos ωt

Сила тока, представляющая собой производную заряда по времени, равна:

Колебания силы тока опережают по фазе колебания напряжения на конденсаторе на .

Амплитуда силы тока равна:

Если ввести обозначение

и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим

Величину Хс, обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением.
Роль этой величины аналогична роли активного сопротивления R в законе Ома.
Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока.
Это и позволяет рассматривать величину Хс как сопротивление конденсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток перезарядки.
Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора.
В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Хс.
С увеличением емкости оно уменьшается.
Уменьшается оно и с увеличением частоты ω.

На протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля.
В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Итак,
сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на .

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

особенности поведения амплитуды вынужденных колебаний в зависимости от соотношения частот возмущающей силы и собственных колебаний.

10. Целесообразно выделить три характерных диапазона частот:

Область низких частот : Ω 0 : в этом случае сдвиг фаз близок к нулю, а амплитуда вынужденных колебаний составит

x 0 x 0(Стат) = ω f 0 2 , 0

− статическое смещение под действием постоянной силы, равной амплитудному значению возмущающей силы, т.е. F = F 0 .

Область высоких частот : Ω >> ω 0 . Начальная фаза в этом случае α → −π . Колебания происходят в противофазе с вынуждающей силой. Амплитуда с ростом частоты убывает по закону:

Область резонанса : Ω ω 0 . В отсутствие сопротивления амплитуда вынужденных колебаний неограниченно возрастает. В реальных системах увеличение амплитуды будет ограничиваться диссипативными потерями.

11. Частоту вынужденных колебаний, при которой наблюдается явление резонанса, называют резонансной частотой:

Ω Рез‚ = ω 0 2 − 2 β 2 ;

при β 0 , Ω РЕЗ ω 0 .

12. Процесс вырождения собственных колебаний и установления вынужденных колебаний протекает по-разному, в зависимости от соотношения между частотами собственных и внешних колебаний. На рис. 277.5 приведены качественные зависимости от времени собственных колебаний (пунктирная кривая) и вынужденных колебаний (сплошная кривая) для разного соотношения частот.

Рис. 277.5. Процесс установления вынужденных колебаний

13. Если величины Ω и ω близки друг к другу, то процесс установления сопровождается чередующимися нарастаниями и спадами типа биений, которые тем глубже, чем меньше силы затухания и тем реже, чем ближе Ω и ω 0 . При резонансе, когда ω = Ω (рис. 277.6) вынужденные колебания устанавливаются без биений тем медленнее, чем меньше затухание, т.е. β 1 > β 2 > β 3 .

14. Явление резонанса в одинаковой степени типично как для механических, так и для электрических и электромеханических колебательных систем и поэтому играет важную роль в самых разнообразных отделах физики и техники.

Рис. 277.6. Процесс установления вынужденных колебаний при ω 0 = Ω

15. Характер резонанса зависит от свойств как самой колебательной системы, в которой происходит явление, так и от свойств внешней возмущающей силы, действующей на систему. Особенно сложный характер явление резонанса имеет в системах с распределёнными параметрами. Например, в струне, резонанс сохраняет свои типичные свойства, однако имеются и отличительные особенности. Система обладает множеством степеней свободы, т.е. целым набором собственных частот. Резонанс может наступать всякий раз, когда одна из гармоник внешней силы совпадает с одной из собственных частот.

16. Искомое отношение амплитуд по данным резонансной кривой, приведенной на рис. 277.1 определится как:

278. Через τ = 3 с после вспышки молнии наблюдатель услышал раскаты грома. На каком расстоянии от него ударила молния, если скорость звука в воздухе с 1 = 330 м/с?

1. Свет распространяется в воздухе со скоростью с 1 3 10 8 м/с, с 2 >> c 1 :

279. На расстоянии Х = 400 м от наблюдателя рабочие вбивают сваи с помощью копра. Каково время между видимым ударом молота о сваю и звуком удара, услышанным наблюдателем, если скорость звука с 1 = 340 м/с?

1. Свет распространяется в воздухе со скоростью с 1 3 10 8 м/с, с 2 >> c 1 :

280. На каком расстоянии от корабля находится айсберг, если ультразвуковой импульс гидролокатора, посланный с борта и распространяющийся в воде

со скоростью v = 1500 м/с, вернулся через время τ = 0,4 с?

Оцените статью
Добавить комментарий