Количество тепла от солнца

Теплово́й бала́нс Земли́ — баланс энергии процессов теплопередачи и излучения в атмосфере и на поверхности Земли. Основной приток энергии в систему атмосфера—Земля обеспечивается излучением Солнца в спектральном диапазоне от 0,1 до 4 мкм . Плотность потока энергии от Солнца на расстоянии 1 астрономической единицы равен около 1367 Вт/м² (солнечная постоянная). По данным за 2000—2004 годы усреднённый по времени и по поверхности Земли этот поток составляет 341 Вт/м² [1] [2] , или 1,74·10 17 Вт в расчёте на полную поверхность Земли.

Содержание

Составляющие теплового баланса [ править | править код ]

Основной приток энергии к Земле обеспечивается солнечным излучением и составляет около 341 Вт/м² в среднем по всей поверхности планеты. Внутренние источники тепла (радиоактивный распад, стратификация по плотности) по сравнению с этой цифрой незначительны (около 0,08 Вт/м² ) [3] .

Из 341 Вт/м² солнечного излучения, попадающего на Землю, примерно 30 % ( 102 Вт/м² ) сразу же отражается от поверхности Земли ( 23 Вт/м² ) и облаков ( 79 Вт/м² ), а 239 Вт/м² в сумме поглощается атмосферой ( 78 Вт/м² ) и поверхностью Земли ( 161 Вт/м² ) [1] . Поглощение в атмосфере обусловлено, в основном, облаками и аэрозолями [3] .

Из 161 Вт/м² поглощаемой поверхностью Земли энергии 40 Вт/м² возвращается в космическое пространство в виде теплового излучения диапазона 3–45 мкм , ещё 97 Вт/м² передаются атмосфере за счёт различных тепловых процессов ( 80 Вт/м² — испарение воды, 17 Вт/м² — конвективный теплообмен). Кроме того, около 356 Вт/м² излучения Земли поглощается атмосферой, из которых 332 Вт/м² (161 – 40 – 97 – 356 + 332 = 0) возвращается в виде обратного излучения атмосферы. Таким образом, полное тепловое излучение поверхности Земли составляет 396 Вт/м² (356+40), что соответствует средней тепловой температуре 288 К (15 °С) [1] [3] .

Атмосфера излучает в космическое пространство 199 Вт/м² , включая 78 Вт/м² , полученные от излучения Солнца, 97 Вт/м² , полученные от поверхности Земли, и разность между поглощаемым атмосферой излучением поверхности и обратным излучением атмосферы в объёме 23 Вт/м² [1] .

Внутреннее тепло Земли [ править | править код ]

Внутренние источники тепла Земли менее значительны по мощности, чем внешние. Считается, что основными источниками являются: распад долгоживущих радиоактивных изотопов (уран-235 и уран-238, торий-232, калий-40), гравитационная дифференциация вещества, приливное трение, метаморфизм, фазовые переходы [4] .

Средняя плотность теплового потока по земному шару составляет 87±2 мВт/м² или (4,42±0,10)·10 13 Вт в целом по Земле [5] , то есть примерно в 5000 раз меньше, чем средняя солнечная радиация. В океанских районах этот показатель составляет в среднем 101±2 мВт/м² , в континентальных — 65±2 мВт/м² [5] . В глубоководных океанических желобах она меняется в пределах 28-65 мВт/м² , на континентальных щитах — 29-49 мВт/м² , в областях геосинклиналей и срединно-океанических хребтах может достигать 100-300 мВт/м² и более [4] . Около 60 % теплового потока ( 2,75·10 13 Вт ) приходится на внутренние источники тепла [6] , остальные 40 % обусловлены остыванием планеты.

Читайте также:  Клей для плитняка на бетонное основание

Согласно измерениям нейтринного потока из недр Земли, на радиоактивный распад приходится 24 ТВт ( 2,4·10 13 Вт ) внутреннего тепла [7] .

Если бы каждый квадратный сантиметр земной поверхно­сти, перпендикулярной солнечным лучам, при среднем расстоя­нии Земли от Солнца, равном почти 150 миллионам км, и при отсутствии атмосферы получал в 1 мин. 1,88 кал, то в течение года при тех же условиях он получил бы до 1000 ккал тепла. Но так как Земля близка по форме к шару и солнечные лучи не везде падают отвесно, да при этом всегда освещена только половина земного шара, то за год на 1 см2 на верхней границе атмосферы поступает в среднем лишь четвертая часть назван­ной величины, т. е. около 250 ккал/см2. Из этого количества солнечного тепла поверхностью земли и атмосферой погло­щается до 140—150 ккал/см2год.
Количество тепла, получаемого от Солнца земной поверх­ностью, зависит прежде всего от угла падения солнечных лу­чей. Чем отвеснее падают солнечные лучи, т. е. чем больше высота солнца над горизонтом, тем меньше путь солнечных лучей в атмосфере (рис. 12) и тем большее количество энергии приходится на единицу площади, и, наоборот, чем меньше угол падения, тем больше путь солнечных лучей в атмосфере и тем меньше энергии приходится на единицу площади.

При прохождении через атмосферу солнечные лучи теряют тем больше энергии, чем длиннее их путь

Максимальное количество солнечной радиации поступает на единицу горизонтальной поверхности земли, перпендикуляр­ной солнечным лучам, тогда, когда солнце находится в зените, т. е. когда угол падения солнечных лучей равен 90°.
В табл. 5 приведены рассчитанные суммы солнечной радиа­ции для летнего и зимнего солнцестояния при отсутствии атмо­сферы. Из данных этой таблицы следует, что при отсутствии атмосферы в дни летнего солнцестояния Арктика получала бы солнечного тепла 1110 кал /см2 сутки, т. е. больше, чем эквато­риальная зона, где суточная сумма тепла составляла бы всего лишь 814 кал/см2.


Расчеты показывают, что при так называемой идеальной атмосфере (абсолютно сухой и чистой) поверхность Земли в вы­соких и даже средних широтах летом получала бы больше тепла, чем в экваториальной зоне. Согласно расчетам, в послед­них числах июня при отсутствии облаков и при средней про­зрачности атмосферы на Северный полюс поступало бы около 670 кал/см2 сутки, на широту 55° 630 кал/см2 сутки, а в эквато­риальную зону лишь около 500 кал/см2 сутки.
В экваториальной зоне количество солнечного тепла не ис­пытывает больших сезонных колебаний (табл. 5). В то же время в средних широтах оно уменьшается в несколько раз, а на Северном полюсе поступление тепла вовсе прекращается в период сентябрь — март.
Такое распределение солнечной радиации объясняется тем, что в Полярном бассейне летом солнце круглые сутки не захо­дит за горизонт, а зимой не появляется над горизонтом, в то время как в экваториальной зоне продолжительность светлого времени суток в течение года не испытывает заметных колеба­ний и равна приблизительно 12 час. Поэтому в течение года низкие широты получают больше тепла, чем средние и высокие широты.
Чтобы выяснить, в какой степени количество энергии, посту­пающей на перпендикулярную солнечным лучам поверхность, зависит от угла их падения, обратимся к табл. 6, составленной Н. Н. Калитиным.

Читайте также:  Как установить выдвижной ящик с телескопическими направляющими


В этой таблице приводятся теоретически вычисленные дан­ные о количестве солнечной радиации, приходящей на перпен­дикулярную поверхность, в зависимости от высоты солнца над горизонтом при полном отсутствии атмосферы (солнечная постоянная) и при прохождении солнечных лучей через иде­альную атмосферу, а также данные, полученные непосредственно из наблюдений при наличии реальной атмосферы при средней прозрачности ее.
Как видно из табл. 6, по сравнению с солнечной постоянной интенсивность радиации даже при условии идеальной атмо­сферы заметно меньше и, конечно, она еще меньше при усло­вии реальной атмосферы. При высоте солнца, равной 20°, интен­сивность солнечной радиации по сравнению с солнечной посто­янной уменьшается почти вдвое, а при высоте солнца 60° — на 30%. Резкое уменьшение интенсивности солнечной радиации в реальной атмосфере происходит главным образом из-за со­держания в ней водяного пара и пыли, обладающих поглощательной способностью.
Так обстоит дело с приходом солнечного тепла на перпен­дикулярную лучам поверхность.
Фактически на единицу горизонтальной поверхности прихо­дится гораздо меньше солнечной энергии. Так, при падении лучей солнца под углом 30° количество радиации, поступающей на 1 см2 горизонтальной поверхности, по сравнению с данными, приведенными в табл. 6, уменьшается в 2 раза, а при высоте солнца 5° — почти в 12 раз. Поток солнечной радиации, посту­пающей на горизонтальную поверхность, быстро убывает от эк­ватора к полюсам.
В дни весеннего и осеннего равноденствия в полдень на эк­ваторе солнце бывает в зените, а на полюсах — на горизонте (рис. 13, а).

Положение Земли по отношению к солнечным лучам в различные сезоны года

В день летнего солнцестояния в северном полушарии высота солнца на экваторе 66,5°, на северном тропике 90°, а на Север­ном полюсе лишь 23,5°. В это время в Арктике солнце не захо­дит за горизонт и вступает в силу полярный день, а Антарк­тика погружается в полярную ночь (рис. 13, б).
В день зимнего солнцестояния в Арктике солнце находится за горизонтом (полярная ночь), а в Антарктике наблюдается полярный день( рис. 13, в). Однако как на Северном, так и на Южном полюсе в полярный день лучи солнца падают под наи­меньшим углом. Продолжительность периода с полярным днем, как и с полярной ночью, равна приблизительно половине года. Поэтому в низких широтах Земли, где высота солнца в тече­ние всего года наибольшая, значительно теплее, чем в средних и особенно в высоких широтах северного и южного полушарий. Этим же объясняется наибольший нагрев земной поверхности в полдень, когда солнечные лучи падают на нее под наиболь­шим углом.

Читайте также:  Клен маньчжурский в подмосковье

Мы уже видели, как много энергии излучает Солнце в окружающее его мировое пространство. Но только менее одной двухмиллиардной доли её поступает к нам на Землю. Подавляющее же большинство солнечной энергии рассеивается в космическом пространстве без всякого полезного для нас действия. Но и падающее на нашу планету количество солнечной энергии очень велико. Его вполне достаточно, чтобы обеспечить все важнейшие процессы, происходящие на земной поверхности. Если бы эта доля солнечного излучения была увеличена примерно на 30 процентов, то климатические условия на Земле изменились бы настолько сильно, что даже на широте Москвы могли бы произрастать тропические растения.

Можно ли определить, сколько тепла поступает от Солнца на Землю в настоящее время? Можно.

Количество тепла, посылаемого на нашу Землю Солнцем, измеряется ежедневно при помощи специальных приборов, называемых актинометрами (рис. 17). Интенсивность солнечных лучей измеряется числом калорий, падающих на один квадратный сантиметр за одну минуту. Ежедневные и многочисленные измерения тепла, приносимого солнечными лучами на земную поверхность, показывают, что при условии, если бы эти лучи падали строго отвесно и вокруг Земли не было бы атмосферы, то каждый квадратный сантиметр земной поверхности получал бы, по расчётам, в течение минуты около двух малых калорий (точнее, 1,90). Измерения, проводимые на протяжении многих десятков лет, не обнаружили заметных изменений в интенсивности солнечных лучей. Поэтому это число (две калории), характеризующее интенсивность солнечных лучей, называется солнечной постоянной.

Но если мы будем измерять интенсивность солнечных лучей, падающих на земную поверхность, окружённую толстым слоем атмосферы, как это есть в действительности, мы увидим, что доходящее до нас количество солнечного тепла непостоянно, что оно всё время меняется под влиянием непрерывных процессов, происходящих в земной атмосфере. Кроме того, разные области земного шара получают неодинаковое количество солнечного тепла; области, расположенные ближе к экватору, получают его больше, области, расположенные ближе к полюсам, — меньше. Это объясняется, главным образом, тем, что солнечные лучи падают на поверхность Земли под различными углами, и потому одни из них более, а другие менее интенсивны. При отвесном падении одно и то же количество лучей приходится на меньшую площадку земной поверхности, чем при наклонном. В экваториальных и близких к ним областях солнечные лучи в середине дня падают на земную поверхность отвесно и потому являются более интенсивными. В полярных и околополярных областях лучи падают всегда наклонно, они как бы скользят по земной поверхности, и потому здесь они менее интенсивны. При наклонном падении

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector