Коллекторы для якорей электродвигателей

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

Есть в наличии >5шт.

График работы: Пн-Пт. с 09:00 до 19:00
Суббота: с 10:00 до 16:00
Воскресенье: заказы, оформленные через сайт будут обработаны в понедельник.

Написать директору

Контакты

г.Москва ул.Горбунова,д.12, корпус 2, строение 6, павильон 226, Торговый центр "Мирус-Авто",56-й километр МКАД внутреняя сторона
+7 (495) 120-10-48
+7 (905) 042-88-54
+7 (916) 388-53-53

Отправьте свою заявку и мы перезвоним Вам в ближайшее время.

Отправляя заявку, вы даете согласие на обработку своих персональных данных. Гарантируем, что Ваши данные не будут переданы третьим лицам.

Конструкция коллекторного электродвигателя постоянного тока

Статор — неподвижная часть двигателя.

Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.

Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.

Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

    Преимущества:

  • лучшее соотношение цена/качество
  • высокий момент на низких оборотах
  • быстрый отклик на изменение напряжения
    Недостатки:

  • постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства
Читайте также:  Как самому сделать ленточный заточной станок

Коллекторный двигатель с обмотками возбуждения

    По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:

  • независимого возбуждения
  • последовательного возбуждения
  • параллельного возбуждения
  • смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

    Преимущества:

  • практически постоянный момент на низких оборотах
  • хорошие регулировочные свойства
  • отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
    Недостатки:

  • дороже КДПТ ПМ
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа &lt Iном) и магнитная система двигателя не насыщена (Ф

Читайте также:  Картридж к кувшину новая вода

Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

,

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

    Преимущества:

  • высокий момент на низких оборотах
  • отсутствие потерь магнетизма со временем
    Недостатки:

  • низкий момент на высоких оборотах
  • дороже КДПТ ПМ
  • плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

    Преимущества:

  • хорошие регулировочные свойства
  • высокий момент на низких оборотах
  • менее вероятен выход из под контроля
  • отсутствие потерь магнетизма со временем
    Недостатки:

  • дороже других коллекторных двигателей

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Характеристики коллекторного электродвигателя постоянного тока

Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.

Читайте также:  Каталог фресок на стену в квартире

Основные параметры электродвигателя постоянного тока

Постоянная момента

Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:

,

  • где Z — суммарное число проводников,
  • Ф – магнитный поток, Вб [1]

Восстановление коллектора электродвигателя

Коллектор двигателя – отдельная часть ротора, представляющая собой барабан, который состоит из медных пластин, разделенных между собой зазорами с миканитовым наполнением.

Коллектор крепится на вал ротора и создает магнитное поле, преобразовывая электрическую энергию во вращательную. При этом, электрическая энергия на коллектор поступает с графитовых щеток. Коллектор при вращении должен постоянно контактировать с поверхностью щеток. Однако, огромная частота оборотов ротора приводит к постепенному стиранию поверхности медных пластин и щеток, что приводит к негативным последствиям в работе двигателя и его сгоранию.

Основные неисправности коллектора и причины их возникновения

Среди всех возможных неисправностей коллектора стоит выделить следующие:

  • Стирание поверхности пластин;
  • Замыкание между пластинами;
  • Механические повреждения пластин.

Основные неисправности коллектора напрямую связаны со сроками эксплуатации двигателя. Длительное вращение ротора влияет на износ пластин, которые при работе двигателя постоянно трутся об графитовые щетки. При этом, износ щеток также влияет на качество их контакта с поверхностью коллектора. При плохом контакте щеток с коллектором в зазоре образуются искры, которые оставляют нагар на пластинах двигателя, что приводит к “пробиванию” между пластинами. Также, к замыканию может привести образования окиси на пластинах при использовании двигателя во влажных условиях и попадание на поверхность коллектора графитовой пыли.

Миканит, залитый в промежутки между пластинами играет роль изоляции между ними. Со временем, когда пластины стираются и теряют плоскость, миканит выступает наружу. Это приводит к его сцеплению со щетками и ухудшению их контакта с медной поверхностью. Трение щеток об выступы миканита приводит к их быстрому износу.

Поломка подшипников может привести к люфту вала ротора. Даже малое смещение оси ротора во время вращения ухудшает контакт, способствует износу щеток и может привести к повреждению поверхности пластин коллектора.

Основные преимущества профессионального ремонта коллектора

Само собой, ремонт коллектора можно выполнить и самостоятельно. Однако, для этого потребуется не только знание электротехники и устройства двигателя, но и наличие специального оборудования, которое необходимо для разборки двигателя и восстановления поверхности коллектора. Кроме того, поломка коллектора может быть вызвана рядом других неисправностей двигателя. Поэтому его ремонт должен сопровождаться полной диагностикой электрической и механической частей устройства.

Ремонт коллектора необходимо выполнять в специально оборудованном месте. Для восстановления поверхности коллектора необходим токарный станок. Разборка ротора и снятие коллектора требует снятия подшипников. Чтобы сделать это без повреждений нужен специальный съемник, который является дорогостоящим прибором и есть в наличии только у профессиональной ремонтной службы.

Почему стоит обращаться к нам

Мы обладаем всем необходимым оборудованием, чтобы выполнить быстрый и качественный ремонт коллектора. Наша мастерская использует только современное оборудование и высококвалифицированных специалистов, с огромным опытом работы в данной области. У нас в наличии все необходимые комплектующие для замены на старые. Мы сотрудничаем только с проверенными поставщиками, поэтому все запасные элементы двигателя выполнены из материала высоко качества.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector