Читайте также:
- I. Характеристика проблемы, на решение которой направлена Программа
- III. Решение выражений.
- IV. Решение некоторых типовых заданий.
- Автоматизированное проектирование систем разработки и технологических схем рудника. Решение задачи для технологии управления составления массива.
- Акустическое разрешение диатонических интервалов
- Архитектурно-композиционное решение здания
- Было принято решение затягивать переговоры.
- В которой Корнелий Удалов получает приглашение на СОС и принимает решение
- В этом случае прокурор принимает решение о согласовании проведения внеплановой выездной проверки в день поступления соответствующих документов.
- Децентрализованное принятие решение
- Динамика и разрешение затаенного страха наполняющейся ванны
- Дифференциальные уравнения. Решение дифференциальных уравнений. Общее решение, частное решение дифференциального уравнения, Интегральные кривые.
Решение
1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:
Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Барабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка работала в течение t = 2 мин. Определить коэффициент полезного действия наклонной плоскости.
где Ап.с. — полезная работа; Адв — работа движущих сил.
В рассматриваемом примере полезная работа — работа силы тяжести
Вычислим работу движущих сил, т. е. работу вращающего момента на выходном валу лебедки:
Угол поворота барабана лебедки определяется по уравнению равномерного вращения:
Подставив в выражение работы движущих сил числовые значения вращающего момента М и угла поворота φ, получим:
Коэффициент полезного действия наклонной плоскости составит
Контрольные вопросы и задания
1. Запишите формулы для расчета работы при поступательном и вращательном движениях.
2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.
3. Колодочным тормозом останавливают барабан после отключения двигателя (рис. 16.6). Определите работу торможения за 3 оборота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.
4. Натяжение ветвей ременной передачи S1 = 700 Н, S2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.
5. Запишите формулы для расчета мощности при поступательном и вращательном движениях.
6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.
7. Определите общий КПД механизма, если при мощности двигателя 12,5 кВт и общей силе сопротивления движению 2 кН скорость движения 5 м/с.
8. Ответьте на вопросы тестового задания.
![]() |
Тема 1.14. Динамика. Работа и мощность
![]() |
Дата добавления: 2014-11-16 ; Просмотров: 1287 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
В отличие от передних, дисковых тормозов, задние настолько редко напоминают о себе, что многие владельцы просто забывают к ним заглядывать. Но барабанные механизмы , скрывающиеся за задними колесами, тоже могут отказать и доставить проблем.
Назначение и конструкция
Барабанный тормозной механизм, как и тормоз прочих конструкций, предназначен для замедления вращения колеса до его полной остановки. При этом кинетическая энергия движущихся масс преобразуется в тепло, которое рассеивается в окружающем воздухе. Барабанные тормоза могут применяться как на передних, так и на задних колесах, хотя из-за относительно низкой эффективности с 1970-х их устанавливают в большинстве случаев только на задней оси.
Основные элементы данного типа тормозного механизма – чугунный или дюралюминиевый барабан и пара колодок с фрикционными накладками. Под действием поршней гидроцилиндра колодки прижимаются к рабочей поверхности барабана, затормаживая его благодаря силе трения.
Гидравлика в большинстве конструкций воздействует на колодки с одной стороны. С противоположного конца у современных колодок нет фиксированных осей вращения, т. е. они плавающие. Это помогает им самоустанавливаться в положении, наиболее выгодном с точки зрения максимально плотного прилегания к рабочей поверхности барабана. После отпускания педали на прежнее место колодки возвращаются под воздействием двух пружин, которые вместе с подпружиненными направляющими стойками удерживают их на щите тормозного механизма.
За постоянство зазора между колодками и рабочей поверхностью барабана «отвечает» автоматическое устройство – самоудлиняющаяся распорная планка или саморегулирующийся цилиндр. В устаревших конструкциях он регулируется вручную с помощью эксцентрика или резьбовой втулки. У большинства автомобилей с задним тормозным механизмом совмещено также устройство затормаживания колес на стоянке – «ручник».
- Отказ задних тормозов водитель обычно замечает только в экстремальной ситуации, когда машина начинает замедляться неожиданно слабо.
Признаки и причины неполадок
Поскольку участие задних колес в замедлении автомобиля значительно меньше, чем передних, владелец не сразу замечает снижение их эффективности. Тем более, что обычно это происходит постепенно. Проблемы задних барабанов наиболее заметны при энергичном торможении – машина снижает скорость медленнее, чем обычно. Если неисправен тормоз лишь одного из колес, на покрытии с низким коэффициентом сцепления резкое торможение может привести к заносу. На многих автомобилях выход из строя задних тормозов особенно заметен при движении задним ходом – передние тормоза, ставшие «задними», оказавшись «в одиночестве», останавливают машину очень неохотно.
На ВАЗах «первого» семейства зазор колодка – барабан регулировался вручную эксцентриками.
Значительная утечка рабочей жидкости приводит к отключению одного из контуров тормозной системы, из-за чего эффективность торможения снижается примерно в два-три раза. Попавший в гидропривод воздух проявляет себя мягкостью педали, срабатыванием тормоза в конце хода педали или после ее повторных нажатий.
Колодки, перекосившиеся из-за отслоившихся накладок, поломки пружин или стоек, обычно издают скребущий звук, задевая за барабан. В таком случае возможно также заклинивание или перегрев барабана, уменьшение наката автомобиля, перерасход топлива. «Овальность» барабана проявляется при энергичном торможении ответными пульсациями на педали, рывками при замедлении и пятнистым износом протектора шин.
Разновидности поломок
Распространенные причины снижения эффективности барабанных тормозов – износ колодок, а также барабана, у которого увеличивается окружность рабочей поверхности. При одновременной предельной их выработке возможны выдавливание поршней из рабочего цилиндра, заклинивание колеса и потеря тормозной жидкости из контура. Разгерметизация бывает при повреждении резиновых манжет цилиндра, следствие – утечка жидкости из системы наружу и подсос в нее воздуха. При частичной разгерметизации работоспособность системы снижается из-за «завоздушивания», а также «замасливания» колодок вытекшей тормозной жидкостью (у заднеприводных машин – еще и маслом из под поврежденного сальника картера заднего моста.
Передняя колодка изнашивается быстрее. Автопроизводитель оговаривает минимальное допустимую толщину накладок.
Барабан, изношенный не более допустимого, можно восстановить, сточив буртик (1) и выровняв канавки (2) на рабочей части.
На авто с большим пробегом из-за коррозии возможно ослабление, «зависание» и разрушение пружин, стягивающих колодки, и тех, что прижимают их к тормозному щиту.
Нажимное усилие колодок может снизиться из-за ослабевшего троса ручника. Изредка отслаиваются фрикционные накладки у некачественных или поржавевших от времени колодок. Иногда встречаются осевое биение тормозного барабана и неравномерный износ (элипс) его внутренней поверхности.
Диагностика
Следы тормоз ной жидкости на рабочем цилиндре свидетельствуют о возможном месте подсоса воздуха.
Точную диагностику делают на «тормозном» стенде с беговыми барабанами и компьютером, вычисляющим процентную эффективность каждого тормозного механизма. Для недорогих подержанных машин достаточно соблюдать регламент обслуживания тормозов и периодически проверять их работу, резко замедляясь со скорости 60–80 км/ч на сухом участке ровного асфальта. Такой тест нужно провести несколько раз. Равномерно загруженный автомобиль должен сохранять прямолинейное движение на всем тормозном пути, в том числе во время движения с заблокированными колесами. Поводом для серьезной диагностики барабанных механизмов должны стать любые нарушения в работе «ручника», который обычно задействует те же барабаны и колодки.
Иметь представление о мощности при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.
Знать зависимости для определения мощности при поступательном и вращательном движениях, КПД.
Уметь рассчитать мощность с учетом потерь на трение и сил инерции.
Мощность
Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.
Мощность — работа, выполненная в единицу времени:
Единицы измерения мощности: ватты, киловатты,
Мощность при поступательном движении (рис. 16.1)
Учитывая, что S/t = vcp, получим
где F — модуль силы, действующей на тело; vср — средняя скорость движения тела.
Средняя мощность при поступательном движении равна произведению модуля силы на среднюю скорость перемещения и на косинус угла между направлениями силы и скорости.
Мощность при вращении (рис. 16.2)
Тело движется по дуге радиуса r из точки М1 в точку M2
где Мвр — вращающий момент.
получим
где ωcp — средняя угловая скорость.
Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.
Если при выполнении работы усилие машины и скорость движения меняются, можно определить мощность в любой момент времени, зная значения усилия и скорости в данный момент.
Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнительную работу.
Отношение полезной работы к полной работе или полезной мощности ко всей затраченной мощности называется коэффициентом полезного действия (КПД):
Полезная работа (мощность) расходуется на движение с заданной скоростью и определяется по формулам:
Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.
Чем выше КПД, тем совершеннее машина.
Примеры решения задач
Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.
Решение
1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.
Полезная мощность определяется по формуле
Р = Fv cos α.
В данном случае α = 0; груз движется поступательно.
2. Скорость подъема груза
3. Необходимое усилие равно весу груза (равномерный подъем).
6. Полезная мощность Р = 3000 • 4 = 12 000 Вт.
7. Полная мощность. затрачиваемая мотором,
Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления воды движению судна. КПД машины 0,4.
Решение
1. Определяем полезную мощность, используемую на движение с заданной скоростью:
2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном движении движущая сила равна силе сопротивления воды:
3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с
4. Сила сопротивления воды
Сила сопротивления воды движению судна
Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.
Решение
1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:
Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Барабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка работала в течение t = 2 мин. Определить коэффициент полезного действия наклонной плоскости.
Решение
где Ап.с. — полезная работа; Адв — работа движущих сил.
В рассматриваемом примере полезная работа — работа силы тяжести
Вычислим работу движущих сил, т. е. работу вращающего момента на выходном валу лебедки:
Угол поворота барабана лебедки определяется по уравнению равномерного вращения:
Подставив в выражение работы движущих сил числовые значения вращающего момента М и угла поворота φ, получим:
Коэффициент полезного действия наклонной плоскости составит
Контрольные вопросы и задания
1. Запишите формулы для расчета работы при поступательном и вращательном движениях.
2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.
3. Колодочным тормозом останавливают барабан после отключения двигателя (рис. 16.6). Определите работу торможения за 3 оборота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.
4. Натяжение ветвей ременной передачи S1 = 700 Н, S2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.
5. Запишите формулы для расчета мощности при поступательном и вращательном движениях.
6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.
7. Определите общий КПД механизма, если при мощности двигателя 12,5 кВт и общей силе сопротивления движению 2 кН скорость движения 5 м/с.
8. Ответьте на вопросы тестового задания.
![]() |
Тема 1.14. Динамика. Работа и мощность
![]() |
ЛЕКЦИЯ 17
Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы